O método da Transformada de Laplace é uma ferramenta muito poderosa na solução de EDO’s lineares e PVI’s correspondentes.
As principais transformadas de Laplace e suas inversas estão tabelas nas abaixo. Em sua maioria, estas transformadas podem ser obtidas através das propriedades que já foram descritas neste artigo.
Você precisa passar em cálculo? Não se preocupe, nós podemos ajudar! Clique aqui e descubra como podemos facilitar sua aprovação. |
Apoie Nosso Trabalho:
Apoie nosso trabalho fazendo um pix de qualquer valor: Chave Pix: 06713646697
Algumas constantes e funções especiais que são usadas nas tabelas são as seguintes:
a) Função Gamma
\begin{equation}
\Gamma(k)=\int_0^\infty e^{-x}x^{k-1}dx, \qquad (k>0)
\end{equation}
b) Função Bessel modificada de ordem \nu
\begin{equation}
I_\nu(x)=\sum_{m=0}^\infty \frac{1}{m!\Gamma(m+\nu+1)}\left(\frac{x}{2}\right)^{2m+\nu}
\end{equation}
c) Função Bessel de ordem 0
\begin{equation}
J_0(x)=1-\frac{x^2}{2^2(1!)^2}+\frac{x^4}{2^4(2!)^2}-\frac{x^6}{2^6(3!)^2}+\cdots
\end{equation}
d) Integral seno
\begin{equation}
\hbox{Si}\ \!(t)=\int_0^t\frac{\sin(x)}{x}dx
\end{equation}
e) Constante de Euler – Mascheroni
\begin{equation}
\gamma=0.57721566490153286060651209008240243104215933593992 …
\end{equation}
TABELA DE TRANSFORMADA DE LAPLACE | |
f(t)=\mathscr{L}^{-1}\{F(s)\} | F(s)=\mathscr{L}\{f(t)\} |
1 | \dfrac{1}{s} |
t | \dfrac{1}{s^2} |
\dfrac{t^{n-1}}{(n-1)!} | \dfrac{1}{s^n}, \qquad (n=1,2,3,...) |
\dfrac{1}{\sqrt{\pi t}} | \dfrac{1}{\sqrt{s}} |
2\sqrt{\frac{t}{\pi}} | \dfrac{1}{s^{\frac{3}{2}}}, |
\dfrac{t^{k-1}}{\Gamma(k)} | \dfrac{1}{s^{k}},\qquad (k>0) |
e^{ at} | \dfrac{1}{s-a} |
te^{at} | \dfrac{1}{(s-a)^2} |
\dfrac{1}{(n-1)!}t^{n-1}e^{at} | \dfrac{1}{(s-a)^n},\qquad (n=1,2,3...) |
\dfrac{1}{\Gamma(k)}t^{k-1}e^{at} | \dfrac{1}{(s-a)^k},\qquad (k>0) |
\dfrac{1}{a-b}\left(e^{at}-e^{bt}\right) | \dfrac{1}{(s-a)(s-b)},\qquad (a\neq b) |
\dfrac{1}{a-b}\left(ae^{at}-be^{bt}\right) | \dfrac{s}{(s-a)(s-b)},\qquad (a\neq b) |
\dfrac{1}{w}\sin(wt) | \dfrac{1}{s^2+w^2} |
\cos(wt) | \dfrac{s}{s^2+w^2} |
\dfrac{1}{a}\sinh(at) | \dfrac{1}{s^2-a^2} |
\cosh(at) | \dfrac{s}{s^2-a^2} |
\dfrac{1}{w}e^{at}\sin(wt) | \dfrac{1}{(s-a)^2+w^2} |
e^{at}\cos(wt) | \dfrac{s-a}{(s-a)^2+w^2} |
\dfrac{1}{w^2}(1-\cos(wt)) | \dfrac{1}{s(s^2+w^2)} |
\dfrac{1}{w^3}(wt-\sin(wt)) | \dfrac{1}{s^2(s^2+w^2)} |
\dfrac{1}{2w^3}(\sin(wt)-wt\cos(wt)) | \dfrac{1}{(s^2+w^2)^2} |
\dfrac{t}{2w}\sin(wt) | \dfrac{s}{(s^2+w^2)^2} |
\dfrac{1}{2w}(\sin(wt)+wt\cos(wt)) | \dfrac{s^2}{(s^2+w^2)^2} |
\dfrac{1}{b^2-a^2}(\cos(at)-\cos(bt)) | \dfrac{s}{(s^2+a^2)(s^2+b^2)},\qquad (a^2\neq b^2) |
\dfrac{1}{4a^3}(\sin(at)\cosh(at)-\cos(at)\sinh(at) | \dfrac{1}{(s^4+4a^4)} |
\dfrac{1}{2a^2}\sin(at)\sinh(at)) | \dfrac{s}{(s^4+4a^4)} |
\dfrac{1}{2a^3}(\sinh(at)-\sin(at)) | \dfrac{1}{(s^4-a^4)} |
\dfrac{1}{2a^2}(\cosh(at)-\cos(at)) | \dfrac{s}{(s^4-a^4)} |
\dfrac{1}{2a^2}(\cosh(at)-\cos(at)) | \dfrac{s}{(s^4-a^4)} |
\dfrac{1}{2\sqrt{\pi t^3}}(e^{bt}-e^{at} | \sqrt{s-a}-\sqrt{s-b} |
e^{\frac{-(a+b)t}{2}}I_0\left(\frac{a-b}{2}t\right) | \dfrac{1}{\sqrt{s+a}\sqrt{s+b}} |
J_0(at) | \dfrac{1}{\sqrt{s^2+a^2}} |
\dfrac{1}{\sqrt{\pi t}}e^{at}(1+2at) | \dfrac{s}{(s-a)^{\frac{3}{2}}} |
\dfrac{\sqrt{\pi}}{\Gamma(k)}\left(\frac{t}{2a}\right)^{k-\frac{1}{2}}I_{k-\frac{1}{2}}(at) | \dfrac{1}{(s^2-a^2)^k},\qquad (k>0) |
J_0(2\sqrt{kt}) | \dfrac{1}{s}e^{-\frac{k}{s}},\qquad (k>0) |
\dfrac{1}{\sqrt{\pi t}}\cos(2\sqrt{k t}) | \dfrac{1}{\sqrt{s}}e^{-\frac{k}{s}} |
\dfrac{1}{\sqrt{\pi t}}\sinh(2\sqrt{k t}) | \dfrac{1}{s^{\frac{3}{2}}}e^{\frac{k}{s}} |
\dfrac{k}{2\sqrt{\pi t^3}}e^{-\frac{k^2}{4t}} | e^{-k\sqrt{s}},\qquad (k>0) |
-\ln(t)-\gamma,\qquad (\gamma\approx 0,5772) | \dfrac{1}{s}\ln(s) |
\dfrac{1}{t}\left(e^{bt}-e^{at}\right) | \ln\left(\dfrac{s-a}{s-b}\right) |
\dfrac{2}{t}\left(1-\cos(wt)\right) | \ln\left(\dfrac{s^2+w^2}{s^2}\right) |
\dfrac{2}{t}\left(1-\cosh(at)\right) | \ln\left(\frac{s^2-a^2}{s^2}\right) |
\dfrac{1}{t}\sin(wt) | \tan^{-1}\left(\frac{w}{s}\right) |
\hbox{Si}\ \!(t) | \frac{1}{s}\cot^{-1}(s) |
\alpha f(t)+\beta g(t) | \alpha\mathscr{L}{L}\left\{ f(t)\right\}+\beta\mathscr{L}{L}\left\{g(t)\right\} |
f'(t) | s\mathscr{L}{L}\left\{f(t)\right\}-f(0) |
f''(t) | s^2\mathscr{L}{L}\left\{f(t)\right\}-sf(0)-f'(0) |
e^{at}f(t) | F(s-a) |
u(t-a)f(t-a) | e^{-as}F(s) |
u(t-a) | \dfrac{e^{-as}}{s} |
\int_0^t f(\tau)d\tau | \dfrac{F(s)}{s} |
\delta(t-a) | e^{-as} |
(f*g)(t) | F(s)G(s) |
tf(t) | -\dfrac{dF(s)}{ds} |
\dfrac{f(t)}{t} | \int_s^\infty F(\hat{s})d\hat{s} |
\dfrac{1}{\sqrt{\pi t^3}} e^{-a^2/4t} | \dfrac{e^{-a \sqrt{s}}}{\sqrt{s}} |
\dfrac{a}{2\sqrt{\pi t^3}} e^{-a^2/4t} | e^{-a \sqrt{s}} |
erfc \left( \dfrac{a}{2 \sqrt{t}} \right) | \dfrac{e^{-a \sqrt{s}}}{s} |
2 \sqrt{\dfrac{t}{\pi} }e^{-a^2/4t} - a erfc \left( \dfrac{a}{2 \sqrt{t}} \right) | \dfrac{e^{-a \sqrt{s}}}{s \sqrt{s}} |
e^{ab} e^{b^2 t} a erfc \left( b \sqrt{t} + \dfrac{a}{2 \sqrt{t}} \right) | \dfrac{e^{-a \sqrt{s}}}{\sqrt{s} ( \sqrt{s} + b)} |
e^{ab} e^{b^2 t} a erfc \left( b \sqrt{t} + \dfrac{a}{2 \sqrt{t}} \right) + erfc \left( \dfrac{a}{2 \sqrt{t}} \right) | \dfrac{ b e^{-a \sqrt{s}}}{\sqrt{s} ( \sqrt{s} + b)} |
erf(\sqrt{t}) | \dfrac{1}{s \sqrt{s+1}} |
erfc(\sqrt{t}) | \dfrac{1}{s} \left[ 1 - \dfrac{1}{\sqrt{s+1}} \right] |
e^t erfc(\sqrt{t}) | \dfrac{1}{\sqrt{s} (s+1)} |
e^t erf(\sqrt{t}) | \dfrac{1}{\sqrt{s} (s-1)} |
e^{-Gt/C} erf \left( \dfrac{x}{2} \sqrt{\dfrac{RC}{t}} \right) | \dfrac{C}{Cs + G} \left( 1 - e^{-x \sqrt{RC s + RG}} \right) sendo C, G, R e x constantes |
\sum \limits_{n=0}^{\infty}{\left[ erf\left( \dfrac{2n +1 +a}{2 \sqrt{t}} \right) - erf\left( \dfrac{2n +1 - a}{2 \sqrt{t}} \right) \right]} | \dfrac{\sinh a \sqrt{s} }{s \sinh \sqrt{s} } |