As propriedades trigonométricas são propriedades e identidades que envolvem funções trigonométricas e que são verdadeiras para todos valores das variáveis envolvidas.
Em geral, são úteis em simplificações e transformações em aplicações, como no cálculo diferencial e integral.
Além disso, incluímos na lista as regras de derivação e integração das funções trigonométricas, bem como algumas fórmulas de integração que julgamos interessantes e úteis nos estudos de Equações Diferenciais, Estatística e correlatos.
Razões Trigonométricas de Ângulos Compostos
1) \text{sen} (A+B) = \text{sen}(A) \text{cos}(B) + \text{cos}(A) \text{sen}(B);
2) \text{sen} (A-B) = \text{sen}(A) \text{cos}(B) - \text{cos}(A) \text{sen}(B);
3) \text{cos} (A+B) = \text{cos}(A) \text{cos}(B) - \text{sen}(A) \text{sen}(B);
4) \text{cos} (A-B) = \text{cos}(A) \text{cos}(B) + \text{sen}(A) \text{sen}(B);
5) \text{tan} (A+B) = \dfrac{\text{tan} (A) + \text{tan} (B)}{1 - \text{tan} (A) \text{tan} (B)} ;
6) \text{tan} (A-B) = \dfrac{\text{tan} (A) - \text{tan} (B)}{1 + \text{tan} (A) \text{tan} (B)} ;
7) \text{cot} (A+B) = \dfrac{\text{cot} (A) \text{cot} (B) -1 }{\text{cot} (B) - \text{cot} (A)} ;
8) \text{cot} (A-B) = \dfrac{\text{cot} (A) \text{cot} (B) + 1 }{\text{cot} (B) - \text{cot} (A)} ;
9) \text{sen} (A+B) \text{sen} (A-B) = \text{sen}^2 (A) - \text{sen}^2 (B) = \text{cos}^2 (B) - \text{cos}^2 (A);
10) \text{cos} (A+B) \text{cos} (A-B) = \text{cos}^2 (A) - \text{sen}^2 (B) = \text{cos}^2 (B) - \text{sen}^2 (A);
11) \text{sen} (A+B+C) = \text{cos}(A) \text{cos}(B) \text{sen}(C) + \text{cos}(A)\text{sen}(B)\text{cos}(C)+ \text{sen}(A)\text{cos}(B)\text{cos}(C)-\text{sen}(A)\text{sen}(B)\text{cos}(C);
12) \text{cos} (A+B+C) = \text{cos}(A) \text{cos}(B) \text{cos}(C) - \text{sen}(A)\text{sen}(B)\text{cos}(C) - \text{sen}(A)\text{cos}(B)\text{sen}(C)-\text{cos}(A)\text{sen}(B)\text{cos}(C);
13) \text{tan} (A+B+C) = \dfrac{ \text{tan}(A) + \text{tan} (B) + \text{tan}(C)- \text{tan}(A) \text{tan}(B) \text{tan}(C)}{1- \text{tan}(A) \text{tan}(B)- \text{tan}(B) \text{tan}(C)- \text{tan}(C) \text{tan}(A)};
14) Se A+B+C = 0 então \text{tan}(A)+ \text{tan}(B)+ \text{tan}(C) = \text{tan}(A) \text{tan}(B) \text{tan}(C) .
15) \text{sen} (2A) = 2 \text{sen}(A) \text{cos}(A) = \dfrac{2\text{tan}(A) }{1 + \text{tan}^2 (A)} ;
16) \text{cos} (2A) = \text{cos}^2 (A) - \text{sen}^2 (A)= 2 \text{cos}^2 (A) -1 = 1 - 2 \text{sen}^2 (A) = \dfrac{1-\text{tan}^2(A) }{1 + \text{tan}^2 (A)} ;
17) \text{tan} (2A) = \dfrac{2\text{tan}(A) }{1 + \text{tan}^2 (A)} ;
18) \text{sen} (3A) = 3 \text{sen} (A) - 4 \text{sen}^3 (A) ;
19) \text{cos} (3A) = 4 \text{cos}^3 (A) - 3 \text{cos} (A) ;
20) \text{tan} (3A) = \dfrac{3 \text{tan} (A) - \text{tan}^{3} (A) }{1 - 3 \text{tan}^2 (A) }
21) \text{sen} (A) = 2 \text{sen} \left( \dfrac{A}{2} \right) \text{cos} \left( \dfrac{A}{2} \right) = \dfrac{2 \text{tan} \left( \dfrac{A}{2} \right) }{1 + \text{tan}^2 \left( \dfrac{A}{2} \right) }
22) \text{cos} (A) = \dfrac{1 - \text{tan}^2 \left( \dfrac{A}{2} \right) }{1 + \text{tan}^2 \left( \dfrac{A}{2} \right) }
23) \text{tan} (A) = \dfrac{2\text{tan} \left( \dfrac{A}{2} \right) }{1 - \text{tan}^2 \left( \dfrac{A}{2} \right) }
24) 1 - \text{cos} (A) = 2 \text{sen}^2 \left( \dfrac{A}{2} \right) ;
25) 1 + \text{cos} (A) = 2 \text{cos}^2 \left( \dfrac{A}{2} \right) ;
26) \dfrac{1 - \text{cos} (A)}{1 + \text{cos} (A) } = \text{tan}^2 \left( \dfrac{A}{2} \right) ;
27) \text{sen} \left( \dfrac{A}{2} \right) + \text{cos} \left( \dfrac{A}{2} \right) = \pm \sqrt{1 +\text{sen}(A) };
28) \text{sen} \left( \dfrac{A}{2} \right) - \text{cos} \left( \dfrac{A}{2} \right) = \pm \sqrt{1 -\text{sen}(A) };
Identidades Trigonométricas
1) \sin^2{x} + \cos^2{x} = 1 ;
2) 1 + \tan^2{x} = \sec^2{x} ;
3) 1+ \cot^2{x} = \csc^2{x} ;
4) 1 \pm \sin{x} = 1 \pm \cos(\dfrac{\pi}{2} - x) ;
Relações Entre Seno, Cosseno e Tangente- Fórmulas de Transformação
1) \sin{(x)}\sin{(y)} = \dfrac{1}{2}\left[ - \cos{(x+y)} + \cos{(x-y)}\right] ;
2) \cos{(x)}\cos{(y)} = \dfrac{1}{2}\left[ \cos{(x+y)} + \cos{(x-y)}\right] ;
3) \cos{(x)}\sin{(y)} = \dfrac{1}{2}\left[ \sin{(x+y)} + \sin{(x-y)}\right] ;
4) \cos{(x)}\sin{(x)} = \dfrac{1}{2}\sin{(2x)} ;
5) \sin{(C)}+\sin{(D)} = 2 \sin{\left( \dfrac{C+D}{2} \right)} \cos{\left( \dfrac{C- D}{2} \right)};
6) \sin{(C)} - \sin{(D)} = 2 \cos{\left( \dfrac{C+D}{2} \right)} \sin{\left( \dfrac{C- D}{2} \right)};
7) \cos{(C)}+\cos{(D)} = 2 \cos{\left( \dfrac{C+D}{2} \right)} \cos{\left( \dfrac{C- D}{2} \right)};
8) \cos{(C)} - \cos{(D)} = 2 \sin{\left( \dfrac{C+D}{2} \right)} \sin{\left( \dfrac{D-C}{2} \right)} = - 2 \sin{\left( \dfrac{C+D}{2} \right)} \sin{\left( \dfrac{C- D}{2} \right)};
Potências Envolvendo Seno e Cosseno
1) \sin ^2 {(x)} = \dfrac{1}{2} - \dfrac{1}{2} \cos{(2x)} ;
2) \cos ^2 {(x)} = \dfrac{1}{2} + \dfrac{1}{2} \cos{(2x)} ;
3) \sin ^3 {(x)} = \dfrac{3}{4} \sin{(x)} - \dfrac{1}{4} \sin{(3x)} ;
4) \cos ^3 {(x)} = \dfrac{3}{4} \cos{(x)} - \dfrac{1}{4} \cos {(3x)} ;
5) \sin ^4 {(x)} = \dfrac{3}{8} - \dfrac{1}{2} \cos{(2x)} + \dfrac{1}{8} \cos{(4x)} ;
6) \cos ^4 {(x)} = \dfrac{3}{8} + \dfrac{1}{2} \cos{(2x)} + \dfrac{1}{8} \cos{(4x)} ;
Valores trigonométricos de ângulos canônicos
Valores trigonométricos de ângulos especiais
Ângulo | 7,5º | 15° | 18º | 22,5º | 36º |
\text{sen}( \theta ) | \dfrac{\sqrt{4- \sqrt{2} - \sqrt{6}}}{2 \sqrt{2}} | \dfrac{\sqrt{3} -1}{2 \sqrt{2}} | \dfrac{\sqrt{5} -1}{4} | \dfrac{1}{2}\sqrt{2- \sqrt{2}} | \dfrac{1}{4} \sqrt{10-2 \sqrt{5}} |
\text{cos}( \theta ) | \dfrac{\sqrt{4+ \sqrt{2} + \sqrt{6}}}{2 \sqrt{2}} | \dfrac{\sqrt{3} +1}{2 \sqrt{2}} | \dfrac{1}{4} \sqrt{10 + 2 \sqrt{5}} | \dfrac{1}{2}\sqrt{2+ \sqrt{2}} | \dfrac{\sqrt{5} +1}{4} |
\text{tan}( \theta ) | (\sqrt{3}-\sqrt{2})\times (\sqrt{2}-1) | 2 - \sqrt{3} | \dfrac{\sqrt{5} -1}{\sqrt{10 + 2 \sqrt{5}}} | \sqrt{2} -1 | \dfrac{\sqrt{5} +1}{\sqrt{10-2 \sqrt{5}}} |
Resultados Importantes
1) \text{sen}( \theta ) = 0 \Rightarrow \theta = n \pi ;
2) \text{cos}( \theta ) = 0 \Rightarrow \theta = (2n+1) \dfrac{ \pi }{2};
3) \text{tan}( \theta ) = 0 \Rightarrow \theta = n \pi ;
4) \text{sen}( \theta ) = \text{sen}( \alpha ) \Rightarrow \theta = n \pi +(-1)^n \alpha onde \alpha \in \left[ - \dfrac{\pi}{2} , \dfrac{\pi}{2} \right] ;
5) \text{cos}( \theta ) = \text{cos}( \alpha ) \Rightarrow \theta = 2n \pi \pm \alpha onde \alpha \in \left[ 0 , \pi \right] ;
6) \text{tan}( \theta ) = \text{tan}( \alpha ) \Rightarrow \theta = n \pi +\alpha onde \alpha \in \left( - \dfrac{\pi}{2} , \dfrac{\pi}{2} \right) ;
7) \text{sen}^2 ( \theta ) = \text{sen}^2( \alpha ), \text{cos}^2 ( \theta ) = \text{cos}^2( \alpha ), \text{tan}^2 ( \theta ) = \text{tan}^2( \alpha ) \Rightarrow \theta = n \pi \pm \alpha ;
8) \text{sen}( \theta ) = 1 \Rightarrow \theta = (4n+1) \dfrac{ \pi }{2};
9) \text{cos}( \theta ) = 1 \Rightarrow \theta = 2n \pi;
10) \text{cos}( \theta ) = -1 \Rightarrow \theta = (2n+1) \pi ;
Algumas Substituições Canônicas
Substituições Algébricas e Trigonométricas | ||
Função | Substituição | |
1) | \sqrt{a^2 - x^2} | x = a \text{sen}( \theta ) ou x = a \text{cos}( \theta ) |
2) | \sqrt{a^2 + x^2} | x = a \text{tan}( \theta ) ou x = a \text{cot}( \theta ) |
3) | \sqrt{x^2 - a^2} | x = a \text{sec}( \theta ) ou x = a \text{cosec}( \theta ) |
4) | \sqrt{a - x} e \sqrt{a + x} | x = a \text{cos}( 2 \theta ) |
5) | a \text{sen}(x )+b \text{cos}(x ) | a = r\text{cos}(\alpha ), b = r \text{sen}(\alpha ) |
6) | \sqrt{ x - \alpha } e \sqrt{\beta -x} | \alpha \text{sen}^2 ( \theta ) + \beta \text{cos}^2 ( \theta ) |
7) | \sqrt{ 2ax -x^2} | x = a [1 - \text{cos} ( \theta )] |
Fórmulas de Diferenciação
1) y = \sin{u} \Rightarrow y' = u' \cos{u} ;
2) y = \cos{u} \Rightarrow y' = -u' \sin{u} ;
3) y = \tan{u} \Rightarrow y' = u' \sec^2{u} ;
4) y = \cot{u} \Rightarrow y' = -u' \csc^2{u} ;
5) y = \sec{u} \Rightarrow y' = u' \sec{u} \cdot \tan{u} ;
6) y = \csc{u} \Rightarrow y' = -u' \csc{u} \cdot \cot{u} ;
7) y = \arcsin{u} \Rightarrow y' = \dfrac{u'}{\sqrt{1-u^2}} ;
8) y = \arccos{u} \Rightarrow y' = \dfrac{-u'}{\sqrt{1-u^2}} ;
9) y = \arctan{u} \Rightarrow y' = \dfrac{u'}{\sqrt{1+u^2}} ;
10) y = arccot u \Rightarrow y' = \dfrac{-u'}{\sqrt{1+u^2}} ;
11) y = arcsec u, |u| \geq 1 \Rightarrow y' = \dfrac{u'}{|u| \sqrt{u^2-1}}, |u| > 1 ;
12) y = arccsc u, |u| \geq 1 \Rightarrow y' = \dfrac{-u'}{|u| \sqrt{u^2-1}}, |u| > 1 ;
Fórmulas de Integração Indefinida
1) \int \sin{u} \cdot du = -\cos{u} + c ;
Apoie Nosso Trabalho:
Apoie nosso trabalho fazendo um pix de qualquer valor: Chave Pix: 06713646697
2) \int \cos{u} \cdot du = \sin{u} +c ;
3) \int \tan{u} \cdot du = \ln{|\sec{u}|} + c ;
4) \int \cot{u} \cdot du = \ln{|\sin{u}|} + c ;
5) \int \sec{u} \cdot du = \ln{|\sec{u} + \tan{u}|} + c ;
6) \int \csc{u} \cdot du = \ln{|\csc{u} - \cot{u}|} + c ;
7) \int \sec{u} \cdot \tan{u} \cdot du = \sec{u} + c ;
8) \int \csc{u}\cdot \cot{u} \cdot du = -\csc{u} + c ;
9) \int \sec^2u \cdot du = \tan{u} + c ;
10) \int \csc^2{u} \cdot du = -\cot{u} + c ;
11) \int{sen( a t) e^{bt}dt} = \dfrac{e^{bt} [b sen(at) -a cos(at)]}{b^2 +a^2} ;
Fórmulas de Recorrência
1) \int \sin^n au \cdot du = -\dfrac{\sin^{n-1}au \cdot \cos{au}}{an} + (\dfrac{n-1}{n}) \cdot \int \sin^{n-2} au \cdot du ;
2) \int \cos^n au \cdot du = \dfrac{ \sin{au} \cos^{n-1} au}{an} + \dfrac{n-1}{b} \cdot \int \cos^{n-2} au \cdot du ;
3) \int \tan^n au \cdot du = \dfrac{ \tan^{n-1}{au} }{a(n-1)} - \int \tan^{n-2} au \cdot du ;
4) \int \cot^n au \cdot du = -\dfrac{ \cot^{n-1}{au} }{a(n-1)} - \int \cot^{n-2} au \cdot du ;
5) \int \sec^n au \cdot du = \dfrac{ \sec^{n-2}{au} \tan{au} }{a(n-1)} + \dfrac{n-2}{n-1} \int \sec^{n-2} au \cdot du;
6) \int \csc^n au \cdot du = -\dfrac{ \csc^{n-2}{au} \cot{au}}{a(n-1)} + \dfrac{n-2}{n-1} \int \csc^{n-2} au \cdot du ;
Fórmulas de Integração Definida
1) \dfrac{1}{2 \pi}\int\limits_{0}^{2 \pi}{\sin ^2 {x} dx} = \dfrac{1}{2 \pi}\int\limits_{0}^{2 \pi}{\cos ^2 {x} dx} = \dfrac{1}{2} ;
2) \dfrac{1}{2 \pi}\int\limits_{0}^{2 \pi}{\sin ^4 {x} dx} = \dfrac{1}{2 \pi}\int\limits_{0}^{2 \pi}{\cos ^4 {x} dx} = \dfrac{3}{8} ;
3) \dfrac{1}{2 \pi}\int\limits_{0}^{2 \pi}{\sin ^2 {x} \cos ^2 {x} dx} = \dfrac{1}{8};
4) \dfrac{1}{2 \pi}\int\limits_{0}^{2 \pi}{\sin ^6 {x} dx} = \dfrac{1}{2 \pi}\int\limits_{0}^{2 \pi}{\cos ^6 {x} dx} = \dfrac{5}{16} ;
5) \dfrac{1}{2 \pi}\int\limits_{0}^{2 \pi}{\sin ^4 {x} \cos ^2 {x} dx} = \dfrac{1}{2 \pi}\int\limits_{0}^{2 \pi}{\sin ^2 {x} \cos ^4 {x} dx} = \dfrac{1}{16} ;
PRECISANDO DE AJUDA COM SEUS EXERCÍCIOS SOBRE ESTE CONTEÚDO? Entre em contato com a gente via WhatsApp clicando aqui. |