EDO’s de 1ª Ordem Separáveis | 1ª Lista de Exercícios Resolvidos

PRECISANDO DE AJUDA COM SEUS EXERCÍCIOS SOBRE ESTE CONTEÚDO? Entre em contato com a gente via WhatsApp clicando aqui.

Uma EDO de primeira ordem que pode ser escrita na forma \dfrac{dy}{dt}=\dfrac{g(t)}{f(y)} onde g e f são contínuas nas variáveis t e y, respectivamente, é chamada de EDO separável.

No caso geral da EDO separável, podemos escrevê-la como $$ \frac{dy}{dt}=\frac{g(t)}{f(y)} \Leftrightarrow f(y) \frac{dy}{dt} = g(t).$$ Supondo que y = h(t) é uma solução para a EDO separável, temos que, pela integração por substituição, $$ f(h(t))h'(t) = g(t) \Leftrightarrow \int{f(h(t)) h'(t) dt} = \int{g(t)dt} +c \Leftrightarrow \int{f(y) dy} = \int{g(t)dt} +c $$

A equação acima indica o procedimento na resolução para as equações diferenciais separáveis. Uma família a um parâmetro de soluções, em geral deduzida implicitamente, é obtida integrando ambos os lados de f(y) dy = g(t) dt . Uma observação importante é quanto ao fato de não ser necessário tentar resolver como função de t, ou seja, não é necessário, à priori, apresentar uma solução explícita do problema.

1ª Lista de Exercícios Resolvidos Sobre EDOs Separáveis

EXERCÍCIO 1: \left( t\ln{y}+ ty \right)dt +\left( y \ln{t} +ty \right)dy=0, \;\;\;t>0\;\;\;y>0

Observe que essa é uma EDO separável:

$$\left( t\ln{y}+ ty \right)dt +\left( y \ln{t} +ty \right)dy=0 \Leftrightarrow \left( \frac{ \ln{y}}{y}+ 1 \right)dt +\left( \frac{ \ln{t}}{t} +1 \right)dy=0$$ $$\Leftrightarrow \frac{y}{ln(y) + y} dy= \frac{t}{ln(t) +t} \Leftrightarrow \int {\frac{y}{ln(y) + y} dy} = \int{\frac{t}{ln(t) +t} dt}$$ cujas primitivas só podem ser aproximadas por métodos numéricos.

EXERCÍCIO 2:  y' = y-y^2

Essa também é uma EDO separável. Daí, encontramos:

$$\frac{1}{y-y^2}dy = dt \Leftrightarrow \int{\frac{1}{y-y^2}dy} = t+c \Leftrightarrow \int{\left(\frac{1}{y} – \frac{1}{y-1} \right) }dy = t +c$$ $$ \Leftrightarrow ln|y| – ln|y-1| = t+c \Leftrightarrow y(t) = \frac{-ke^{t}}{1-ke^t}$$

EXERCÍCIO 3: (t^2 + 1)y' = -tg(y)

Essa EDO também pode ser resolvida como uma EDO separável:

$$ \frac{dy}{-tg(y)} = \frac{dt}{t^2+1} \Leftrightarrow -cotg(y)dy = arctg(t) +c.$$

Integrando em ambos os lados obtemos: $$  -ln|seny| = arctg(t) + c  \Leftrightarrow y(t) = arccossec(ke^{arctg(t)})$$

EXERCÍCIO 4: Considere a E.D.O. de primeira ordem $$y y’ = (t-1) e^{-y^2}$$

a) Determine sua solução EXPLÍCITA;
b) Encontre a solução particular tal que y(0) = 1

SOLUÇÃO: Observe que essa é uma EDO separável qe pode ser escrita como $$\frac{ydy}{e^{-y^2}} = (t-1)dt \Leftrightarrow e^{y^2} y dy = (t-1)dt .$$

Integrando em ambos os lados da equação obtemos a seguinte solução implícita: $$e^{y^2} = t^2 – 2t +k \Leftrightarrow y^2 = \ln{|t^2 -2t+k|},$$ o que nos leva à solução explícita $$y(t) = \pm \sqrt{\ln{|t^2 -2t+k|}}$$ e responde o item a).

Para responder o item b), iremos aplicar a condição inicial na solução implícita e^{y^2} = t^2 - 2t +k , encontrando $$e^{1^2} = 0^2 – 2.0 +k \Leftrightarrow k = e.$$ Assim, substituindo o valor da constante em y(t) encontramos duas soluções: $$y_1(t) = \sqrt{\ln{|t^2 -2t+k|}}$$ $$y_2(t) = – \sqrt{\ln{|t^2 -2t+k|}}.$$

Como apenas y_1(0) = 1, então a solução particular desta equação é dada por $$y(t) = \sqrt{\ln{|t^2 -2t+e|}}.$$

EXERCÍCIO 5: Resolva as EDOs de 1ª ordem separáveis abaixo:

a) y' - 1 -e^{2t} = 0

SOLUÇÃO: Neste caso, podemos reescrever esta EDO como y' = 1 + e^{2t} , logo, $$ y(t) = \int{(1 + e^{2t})dt} = t + \frac{e^{2t}}{2} +c .$$

b) y' - sen(t) = 0

SOLUÇÃO: Neste caso, podemos reescrever esta EDO como y' =  sen(t) , logo, $$ y(t) = \int{sen(t)dt} = -cos(t) +c .$$

c) (1+t) dy - ydt = 0

SOLUÇÃO: Neste caso, dividindo a equação por (1 +t)y, podemos escrever, $$\frac{dy}{y} = \frac{dt}{(1+t)},$$ da qual se segue que $$\int{\frac{dy}{y}} = \int{ \frac{dt}{(1+t)}}$$ $$\ln{|y|} = \ln{|1+t| }+ c_1$$ $$y = e^{\ln{|1+t| }+ c_1}$$ $$y = e^{c_1} |1+t| $$ $$y = \pm k(1+t) $$

d) t e^{-y}sen(t)dt - y dy = 0

SOLUÇÃO: Neste caso, depois de multiplicar a EDO por e^y , obtemos $$ tsen(t) dt = y e^y dy $$ e integrando por partes em ambos os lados da equação, obtemos a solução implícita $$ -t cos(t) + sen(t) = y e^y – e^y +c . $$


Apoie Nosso Trabalho:

Apoie nosso trabalho fazendo um pix de qualquer valor: Chave Pix: 06713646697


e) ty^4 dt + (y^2 +2)e^{-3t}dy = 0

SOLUÇÃO: Neste caso, multiplicando a equação por e^{3t} e dividindo por y^4 , obtemos $$te^{3t} dt + \frac{y^2 + 2}{y^4} dy = 0$$ e usando a integração por partes no primeiro termo e a integração simples no segundo termo, encontramos $$\frac{1}{3} t e^{3t} – \frac{1}{9}e^{3t} – \frac{1}{y} – \frac{2}{3}\frac{1}{y^3} = c$$ que é uma solução implícita da EDO.

EXERCÍCIO 10: Resolva os PVIs abaixo:

a) y' = - \dfrac{x}{y}, \qquad y(4) = 3 ;

SOLUÇÃO: Neste caso, reescrevendo a equação como ydy = -x dx, obtemos $$\int{ydy} = \int{-xdx} \Leftrightarrow \frac{y^2}{2} = – \frac{x^2}{2} + c_1$$

Esta solução pode ser escrita como x^2 + y^2 = c^2, trocando as constantes 2 c_1 por c^2 . Ou seja, esta solução representa uma família de círculos concêntricos.

Agora, quando x = 4 e y = 3, temos 16 +9 = 25 = c^2 . Logo, o problema de valor inicial possui uma solução única determinada implicitamente por $$ x^2 + y^2 = 25 .$$

b) y' = y^2 -4, \qquad y(0) = -2 .

SOLUÇÃO: Neste caso colocamos a equação na forma \dfrac{dy}{y^2 - 4} = dx , e usando Frações Parciais do lado esquerdo, obtemos $$ \frac{-1/4}{y+2} + \frac{1/4}{y-2} – dx.$$ Integrando em ambos os lados $$ – \frac{1}{4} \ln{|y+2|} + \frac{1}{4} \ln{|y-2|}  = x + c_1 . $$ Usando propriedades de logaritmo encontramos $$ \ln{ \left| \frac{y-2}{y+2} \right|}  = 4x +c_2 $$ $$ \frac{y-2}{y+2} = c e^{4x}$$ que é nossa solução implícita. Através de manipulações algébricas podemos encontrar uma solução explícita dada por $$y(t) = 2 \frac{1 + c e^{4x}}{1 – c e^{4x}}.$$ Agora, usando a condição inicial obtemos $$-2 = 2 \frac{1 + c}{1 – c } \Leftrightarrow -1 = 1$$ que é um absurdo. Ou seja, não existe nenhuma solução da EDO que passe pelo ponto (0,-2).

Leia Mais:

Assista Nossa Video-Aula

5 comentários em “EDO’s de 1ª Ordem Separáveis | 1ª Lista de Exercícios Resolvidos”

  1. Pingback: EDOs de 1ª Ordem Separáveis | Matemática Simplificada

  2. Pingback: EDO's de 1ª Ordem Separáveis | 2ª Lista de Exercícios Resolvidos

  3. Pingback: EDO's de 1ª Ordem Separáveis | 3ª Lista de Exercícios Resolvidos

  4. Pingback: EDO's de 1ª Ordem Lineares | 2ª Lista de Exercícios Resolvidos

  5. Pingback: EDO's de Ricatti e de Bernoulli | 1ª Lista de Exercícios Resolvidos -

Deixe um comentário

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *